Translate

quinta-feira, 13 de setembro de 2012

DIVISIBILIDADE

A definição de divisor está relacionada com a de múltiplo. Um número natural b é divisor do número natural a, se a é múltiplo de b.


Exemplo:
2 é divisor de 8, pois 8=2×4, logo 8 é múltiplo de 2 e também é múltiplo de 4.


Os divisores de um número a também formam um conjunto finito, aqui denotado por D(a).

Exemplos:
(1) Divisores de  8: D(8)={1,2,4,8}
(2) Divisores de 16: D(16)={1,2,4,8,16}
(3) Divisores de 20: D(20)={1,2,4,5,10,20}

Observação: 
Se aplicarmos essa definição no conjunto dos numero naturais incluindo o 0(zero), o número zero se tornaria múltiplo de todos os números naturais, mais zero não divide qualquer número natural, exceto ele próprio.

Vamos Entender melhor:

Se aceitarmos que 6÷0=b, então teremos que admitir que:
6 = 0 x b
Mas não existe um número b que multiplicado por 0 (zero) seja igual a 6, portanto a divisão de 6 por 0 é impossível.
A divisão de 0/0 (zero por zero) é indeterminada, o que significa que pode existir uma situação que ela passe a ter significado, no sentido seguinte:

Se aceitarmos que 0÷0=X, então poderemos escrever que:
0 ÷ 0 = X ÷ 1
Como temos uma igualdade de frações, gerando uma proporção, deveremos aceitar que o produto dos meios é igual ao produto dos extremos nesta proporção e assim:
0 × 1 = 0 × X = 0
que não é contraditório e isto pode ser realizado para todo X real, razão pela qual a expressão da forma 0÷0 é dita indeterminada.


Critérios de divisibilidade

     Para alguns números como o dois, o três, o cinco e outros, existem regras que permitem verificar a divisibilidade sem se efetuar a divisão. Essas regras são chamadas de critérios de divisibilidade.

Divisibilidade por 2
Um número natural é divisível por 2 quando ele termina em 0, ou 2, ou 4, ou 6, ou 8, ou seja, quando ele é par.
Exemplos:
1) 5040 é divisível por 2, pois termina em 0.
2) 237 não é divisível por 2, pois não é um número par.

Divisibilidade por 3
Um número é divisível por 3 quando a soma dos valores absolutos dos seus algarismos for divisível por 3.
Exemplo:
234 é divisível por 3, pois a soma de seus algarismos é igual a 2+3+4=9, e como 9 é divisível por 3, então 234 é divisível por 3.

Divisibilidade por 4
Um número é divisível por 4 quando termina em 00 ou quando o número formado pelos dois últimos algarismos da direita for divisível por 4.
Exemplo:
1800 é divisível por 4, pois termina em 00.
4116 é divisível por 4, pois 16 é divisível por 4.
1324 é divisível por 4, pois 24 é divisível por 4.
3850 não é divisível por 4, pois não termina em 00 e 50 não é divisível por 4.

Divisibilidade por 5
Um número natural é divisível por 5 quando ele termina em 0 ou 5.
Exemplos:
1) 55 é divisível por 5, pois termina em 5.
2) 90 é divisível por 5, pois termina em 0.
3) 87 não é divisível por 5, pois não termina em 0 nem em 5. 

Divisibilidade por 6
Um número é divisível por 6 quando é divisível por 2 e por 3.
Exemplos:
1) 312 é divisível por 6, porque é divisível por 2 (par) e por 3 (soma: 6).
2) 5214 é divisível por 6, porque é divisível por 2 (par) e por 3 (soma: 12).
3) 716 não é divisível por 6, (é divisível por 2, mas não é divisível por 3).
4) 3405 não é divisível por 6 (é divisível por 3, mas não é divisível por 2).

Divisibilidade por 8
Um número é divisível por 8 quando termina em 000, ou quando o número formado pelos três últimos algarismos da direita for divisível por 8.
Exemplos:
1) 7000 é divisível por 8, pois termina em 000.
2) 56104 é divisível por 8, pois 104 é divisível por 8.
3) 61112 é divisível por 8, pois 112 é divisível por 8.
4) 78164 não é divisível por 8, pois 164 não é divisível por 8.

Divisibilidade por 9
Um número é divisível por 9 quando a soma dos valores absolutos dos seus algarismos for divisível por 9.
Exemplo:
2871 é divisível por 9, pois a soma de seus algarismos é igual a 2+8+7+1=18, e como 18 é divisível por 9, então 2871 é divisível por 9.

Divisibilidade por 10
Um número natural é divisível por 10 quando ele termina em 0.
Exemplos:
1) 4150 é divisível por 10, pois termina em 0.
2) 2106 não é divisível por 10, pois não termina em 0.

Divisibilidade por 11
Um número é divisível por 11 quando a diferença entre as somas dos valores absolutos dos algarismos de ordem ímpar e a dos de ordem par é divisível por 11.
O algarismo das unidades é de 1ª ordem, o das dezenas de 2ª ordem, o das centenas de 3ª ordem, e assim sucessivamente.
Exemplos:
1) 87549
    Si (soma das ordens ímpares) = 9+5+8 = 22
    Sp (soma das ordens pares) = 4+7 = 11
    Si-Sp = 22-11 = 11
    Como 11 é divisível por 11, então o número 87549 é divisível por 11.
2) 439087
    Si (soma das ordens ímpares) = 7+0+3 = 10
    Sp (soma das ordens pares) = 8+9+4 = 21
    Si-Sp = 10-21
    Como a subtração não pode ser realizada, acrescenta-se o menor múltiplo de 11 (diferente de zero) ao minuendo, para que a subtração possa ser realizada: 10+11 = 21. Então temos a subtração 21-21 = 0.
    Como zero é divisível por 11, o número 439087 é divisível por 11. 

Divisibilidade por 12
Um número é divisível por 12 quando é divisível por 3 e por 4.
Exemplos:
1) 720 é divisível por 12, porque é divisível por 3 (soma=9) e por 4 (dois últimos algarismos, 20).
2) 870 não é divisível por 12 (é divisível por 3, mas não é divisível por 4).
3) 340 não é divisível por 12 (é divisível por 4, mas não é divisível por 3).

Divisibilidade por 15
Um número é divisível por 15 quando é divisível por 3 e por 5.
Exemplos:
1) 105 é divisível por 15, porque é divisível por 3 (soma=6) e por 5 (termina em 5).
2) 324 não é divisível por 15 (é divisível por 3, mas não é divisível por 5).
3) 530 não é divisível por 15 (é divisível por 5, mas não é divisível por 3).

Divisibilidade por 25
Um número é divisível por 25 quando os dois algarismos finais forem 00, 25, 50 ou 75.
Exemplos:
200, 525, 850 e 975 são divisíveis por 25.





Fonte: http://pessoal.sercomtel.com.br
http://www.somatematica.com.br
http://www.brasilescola.com


Nenhum comentário:

Postar um comentário

PARA VER AS OUTRAS POSTAGENS VÁ AO MENU NO INICIO DA PÁGINA DO BLOG, SELECIONE A OPÇÃO QUE MAIS TEM HAVER COM O CONTEÚDO QUE VOCÊ PROCURA E
CONTINUE COM SEUS ESTUDOS...
ATS: MATHEMANIACOS